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U Application of Dot Product: Document Similarity

= Task: compute "similarity" of documents (think Google)

= One of the fundamental tasks in information retrieval (IR)

= Example: search engine / database of scientific papers needs to
suggest similar papers for a given one

= Assumption: all documents are over a given, fixed vocabulary V
consisting of N words (e.g., all English words)

= Consequence: set of words, V, occurring in the docs is known & fixed

= Assumption: don't consider word order — bag of words model

= Consequence: "John is quicker than Mary" = "Mary is quicker than John"
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= Representation of a document D:

= For each word we&V: determine f(w) = frequency of word win D

= Exam plEZ Anthony &  Julius The Hamlet Othello Macbeth
Cleopatra Caesar Tempest

ANTHONY 157 73 0 0 0 1

BRUTUS 4 157 0 2 0 0

CAESAR 232 227 0 2 1 0

CALPURNIA 0 10 0 0 0 0

CLEOPATRA 57 0 0 0 0 0

MERCY 2 0 3 8 5 8

1 1 1 5

WORSER 2 0

= Fix a word orderin V=(vq, vy, v3, ..., v ) (in principle, any order will do)

= Represent D as a vector in RN
D= (f(v),f(va),f(vs),....f(w))

= Note: our vector space is HUGE (N ~ 100,000 — 10,000,000)

= For each word w, there is one axis in our vector space!
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= Define similarity s between documents
D1 and D> as

POOR

D -D,
s(Dy, Dy) = = cos(Dy, D
(P D2) = 15 oy = <SP B2)

= This similarity measure is called "vector space model"

= One of the most frequently used similarity measures in IR

= Note: our definition is a slightly simplified version of the commonly
used one (we omitted the tf-idf weighting)
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= Why not the Euclidean distance |D; — D5|| ?

= Otherwise: documents D, and D concatenated to itself would be very
dissimilar!

POOR . d»:Rich poor gap grows
1 dy: Ranks of starving poets swell

q: [rich poor]

ds: Record baseball salaries in 2010
RICH

. . 1 9
= Why do we need the normalization by DI DAl

= Same reason ...
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W Parallel Reduction Revisited B

= Why didn't we do the reduction this way?

10 | 1 8 | -1 0| -2 3 51-2|-3]|2 7 O |11 ]| O 2

> 07 97 & O &7 ¢’ & ¢

11 1 7 |1 (-2 |-2]| 8 5 S (-39 7 |11 (11 ] 2 2

Y S = = =

18 | 1 7 | -1 6 | -2 | 8 5 4 [ -39 7 (13 [ 11| 2 2

1Ds é/ é/

24 | 1 7 | -1 6 | -2 | 8 5117 -39 7 |13 (11| 2 2

TIDs

11 1 7 | -1 6 [ -2 | 8 5 (17 -39 7 (1311 | 2 2
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= The kernel for this algorithm: Problem:

highly
divergent
warps are

very inefficient

// do reduction in shared mem
__syncthreads() ;
for ( int i = 1; i < blockDi ;1 *= 2 )
{
if ( threadIdx.x % (2*i) == 0 )
cache[threadIdx.x] += cache[threadIdx.x + i];
__syncthreads() ;
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= Partition your domain such that each subset fits into shared memory;
handle each data subset with one thread block
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= Load the subset from global memory to shared memory; exploit
memory-level parallelism by loading one piece per thread; don't forget
to synchronize all threads before continuing!
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= Perform the computation on the subset in shared memory
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= Copy the result from shared memory back to global memory
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Y Remarks on Memory (Applies to GPUs and CPUs) §

= |n our dot product kernel, we could have done everything in
global memory, but ...

= Global memory bandwidth is loooow:
|deal

Reality
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W  Coalesced Memory Access

.

= One of the most important optimization techniques for massively
parallel algorithm design (on GPUs and — to some degree — CPUs!)

Coalesced memory accesses Uncoalesced memory accesses
Thread 0 | Address 128 Thremd 0 Address 128
Thread 1 Address 132 Thread 1 ‘ Address 132
Thread 2 Address 136 Thread 2 Address 136
Thread 3  Address 140 Thread 3 Address 140
Thread 4  Address 144 Thread 4 Address 144
Thread 5  Address 148 Thread 5 Address 148
Thread 6 Address 152 Thread 6 Address 152
Thread 7 Adkdress 156 ——_— PR
S [entm——— Thread 8 (s
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= When does the GPU win over the CPU?

= Arithmetic intensity of an algorithm :=

number of arithmetic operations

amount of transferred bytes

= Sometimes also called computational intensity

= Unfortunately, many (most?) algorithms have a low arithmetic
intensity — they are bandwidth limited

GPU wins if memory access
is "streamed" = coalesced

= Hence, "stream programming
architecture"

G. Zachmann Massively Parallel Algorithms SS

50

Gbytes/sec
N w A
o o o

—_
o

Cache Seq Rand  Cache Seq Rand
GeForce 7800 GTX  Pentium 4
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How to Achieve Coalesced Access

= Addresses from a warp (“thread-vector”) are converted into line
requests

= [ine sizes: 32B and 128B

= Goal is to maximally utilize the bytes in these lines

addresses from a warp are within cache line

160 192+ 224 256 288 S20 8 ah 2 a8
Memory addresses
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W 2D Array Access Pattern (row major)

= Consider the following piece in a kernel (e.g., matrix x vector):

for ( int j = 0; j < 32; j ++ ) {
float x = A[treadIdx.x][]];
do something with it ...

Element Offsets
float A[N][32];

Aithreadldx.x][O]:. i
Althreadldx.x][1]=...;

1 thread per row

. ¢ | ! ! | ! | | | | |
0 32 64 96 128 160 192 224 256 288 320 352 384 416

» Uncoalesced access pattern:

= Elements read on 15t SIMT access: 0, 32, 64, ...
= Elements read on 2" SIMT access: 1, 33, 65, ...

= Also, extra data will be transferred in order to fill the cache line size

= Generally, most natural access pattern for direct port of a C/C++ code!
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Y Transposed 2D Array Access Pattern

= The "natural" way to store matrices is called row major order

= Column major := store a logical row in a physical column
" l.e., Aoo — A[O][O] , Aor — A[1][O], Aoz — Al2][O], ...
Ao = A[OI[1], A1 = ALTI[T], A2 = AL2][], ...
Ao — A[O][2], ...

= Transform the code piece (e.g., rowxcolumn) to column major:

for ( int j = 0; j < 32; j ++ ){
float x = A[j] [treadIdx.x];
. do something with it ...

= Now, we have coalesced accesses:
= Elements read on 15t SIMT access: O, 1, 2, ..., 31

= Elements Element Offsets
read on 21 O [N | |3N |
SIMT access:  [UIECCICREYRNE 1 [N+t [ [31°Ns |
32 33 63 A[1][threadldx.x]=...; 1 thread per column -_--
’ y cees

- 1 T 1 1 [ T 1 1 [ [ [ ]
G. Zachmann ERWEVEIEIE 0 32 64 96 128 160 192 224 256 288 320 352 384 416
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U  Array of Structure or Structure of Array?

= An array of structures (A0S) struct Point {

behaves like float x; float y; float z;

iy

row major accesses: Point PointList[N];

PointList[threadIdx.x] .x =

0 32 64 96 128 160 192 224 256 288 320 352 384 416

= A structure of arrays (SoA) struct PointList ({

behaves like float x[N];

. float y[N];

column major access: float z[N];
};

PointList.x[threadIdx.x] =

0 32 64 96 128 160 192 224 256 288 320 352 384 416

G. Zachmann Massively Parallel Algorithms SS May 2013
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Simulating Heat Transfer in Solid Bodies

= Assumptions:
= For sake of illustration, our domain is 2D

= Discrete domain — 2D grid
(common approach in simulation)

= A few designated cells are "heat sources"
— cells with constant temperature

= Simulation model (simplistic):

Tn—|—1 Tn Z o TInJ)

(k,NeN(ij)

o« T -U-MOTy e Y T
(k.NEN(i))
N = number of cells in the neighborhood
" |terate this (e.g., until convergence to steady-state)
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= Do we achieve energy conservation?

N(@i,j) = < n

= For sake of simplicity, assume

= Energy consumption iff Z T = ' Z T
ihJ

I

= Plugging (1) into (2) yields
(2)
(L=NW)Y Th+py, > TL=> T
C ij ij (k,NEN(i)) y IJ
M

= Therefore, p is indeed a free material parameter (= "heat flow speed")
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Pattern: Double Buffering

= Observations:

= Each cell's next state can be computed completely independently

» We can arrange our computations like this:

(= ) ( )
~ ~
D g
=] _m 1 -
= ~3 < & —3 < 2
— D — —_— — (D — —_— — D —
= e 3 e =
-3+ 33 24 Ry 2
Q = Q = Q
_97 ] >_§* ) ~ %g*. ) |~ _] 1., 3., ... iteration
®)
> )
=/ = m
A S A
= General parallel programming pattern: o o
: : —37 3
double buffering ("ping pong") > ] @ |
—
2., 4., ... iteration
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= One thread per cell

1. Kernel for re-setting heat sources:

if ( cell is heat cell ):
read temperature from constant "heating stencil"

2. Kernel for one transfer step:

Read all neighbor cells input grid[tid.x+-1][tid.y+-1]
Accumulate them

Write new temperature in output grid[tid.x][tid.y]

3. Swap pointers to input & output grid (done on host)

= Challenge: border cells! (very frequent problem in sim. codes)
= Use if-then-else in above kernel?
= Use extra kernel that is run only for border cells?
= Introduce padding around domain? Arrange domain as torus?
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Texture Memory

0

= Many computations have the following characteristics:

= They iterate a simple function many times

= They work on a 2D/3D grid iy Gin

= We can run one thread per grid cell

= Each thread only needs to look at neighbor cells

Gout

= Each iteration transforms an input grid into an output grid

= For this kind of algorithms, there is texture memory:

SEGFAULT SEGFAULT
L]

W S

= Special cache with optimization for spatial locality SEGFAULT [ESSSERSEERSRER . ) 1
= Access to neighbor cells is very fast

= Important: can handle out-of-border accesses SEOTABLTSECFRUET
automatically by clamping or wrap-around! |

= For the technical details: see "Cuda by Example",
Nvidia's "CUDA C Programming Guide",
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= The locality-preserving cache is probably achieved by arranging
data via a space-filling curve:
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U  Other Applications of Texture Memory o §

= Most image processing algorithms exhibit this kind of locality

= Trivial example: image addition / subtraction — neighboring
threads access neighboring pixels

Img 1 +Img 2
| bw|—z b
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U CUDA's Memory Hierarchy

Kernel Memory Ak

® Per-thread
2(—» On-chip
Thread

«>| Off-chip, uncached

® Per-block

* On-chip, small

® Per-device

cemel 0 [RAIRCABRR * Uncached

QE> e Persistent across
- kernel launches

oot AR —> R
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W CUDA Variable Type Qualifiers ‘

S

Variable declaration Memory Access Lifetime
__device _ local int LocalVar; local thread thread
__device ~_ shared  int SharedVar; shared block block
__device int GlobalVar; global grid  application
__device _ constant _ int ConstantVar; constant grid  application

= Remarks:
= device_ _ isoptional when used with __local , shared

or _ constant

= Automatic variables without any qualifier reside in a register
- Except arrays, which reside in local memory (slow)
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W CUDA Variable Type Performance g

VR =

e

Variable declaration Memory Penalty
int var; register 1x
int array var[10]; local 100x

__shared  int shared var; shared 1x
__device  int global var; global 100x
__constant  int constant var; constant 1x

= scalar variables reside in fast, on-chip registers
= shared variables reside in fast, on-chip memories

= thread-local arrays & global variables reside in uncached off-chip
memory

= constant variables reside in cached off-chip memory
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Wi  Where to Declare Variables?

/

Can host access it?

~

\_ J
bal o yes no register (auto), or
gonstant ohared or
local
% N 4 )
Outside _Of In the kernel
any function
\ - N~ g
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Massively Parallel Histogramm Computation

= Definition (for images):

h(x) = # pixels with level x

xe0,...,L-1

= Applications: many!

= Huffman Compression (see Info 2)

= Image Equalization (see Advanced Computer Graphics)

\song\scripts\cpp\dsp\ histoEqualization\bin\ histoEqualization.exe
¥ Jriginal Histogram
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= The sequential algorithm:

unsigned char input[MAX INP SIZE];// e.g. image
int input size; // # valid chars in input
unsigned int histogram[256] ; // 256 ASCII chars

// clear histogram
for (int i = 0; i < 256; i ++ )
histogram[i] = 0;

[

for (int i = 0; i < input size; i ++ )
histogram[ input[i] ] ++ ; // real histogram comput.

J

// verify histogram

long int total count = 0;

for (int i = 0; 1 < 256; i ++ )
total count += histogram[i];

if ( total count != input size )
fprintf (stderr, "Error! ..." );

G. Zachmann Massively Parallel Algorithms SS May 2013 Fundamental Algos & Introduction to CUDA
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= Naive "massively parallel" algorithm:
= One thread per bin (e.qg., 256)

= Each thread scans the complete input and counts the number of
occurrences of its "own" character

= At the end, each thread stores its character count in its histogram slot

= Disadvantage: not so massively parallel ...
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= New approach: one thread per input character
= The setup on the host side:

set up device arrays d input, d histogram
cudaMemset ( d histogram, 0, 256 * sizeof(int) );
int threadsPerBlock = 256;
int nBlocks = # (multiprocessors on device) * 2;
computeHistogram <<< nBlocks, threadsPerBlock >>>
( d input, input size, d histogram );

= Notes:

= Letting threadsPerBlock = 256 makes things much easier in our
case here

= Letting nBlocks = (number of multiprocessors [SMXs] on the device)
* 2 is a good rule of thumb, YMMV

= On current hardware (Kepler) = ~ 16384 threads

G. Zachmann Massively Parallel Algorithms SS May 2013 Fundamental Algos & Introduction to CUDA 116



eeeee

= The kernel on the device side:

__global  wvoid

computeHistogram( unsigned char * input,
long int input size,
unsigned int histogram[256] )

int i = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
while ( i < input size )

{

histogram[ input[i] ] += 1;
1 += stride;

= Problem: race condition!!
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Solution: Atomic Operations

" The kernel with atomic add:

__global  void

computeHistogram( unsigned char * input,
long int input size,
unsigned int histogram[256] )

int 1 = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
while ( i < input size )
{
atomicAdd( & histogram[input[i]], 1 )
i += stride;

= Prototype of atomicAdd():
T atomicAdd( T * address, T val )

= where T can be int, £loat (and few others)
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= Semantic: while atomicAdd performs its operation on address, no

other thread can access this memory location! (neither read, nor
write)

" Problem: this algorithm is much slower than the sequential one! go_

= Lesson: always measure performance against CPU!

= Cause: congestion i I |

s —————

(M .
[T l;’ il

= Lots of threads waiting for a few TN
memory locations to become available

ey '
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= Remedy: partial histograms in shared memory

computeHistogram( unsigned char * input,
long int input size,
unsigned int histogram[256] )

shared unsigned int partial histo[256];

partial histo[ threadIdx.x ] = 0;
__syncthreads() ;

int i = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
while ( i < input size ) {
atomicAdd( & partial histo[input[i]], 1 );
i += stride;

__syncthreads() ;
atomicAdd( & histogram[threadIdx.x],
partial histo[input[i]], 1 );
}

= Note: now it's obvious why we chose 256 threads/block
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More Atomic Operations

= All programming languages / libraries / environments providing
for some kind of parallelism/concurrency have one or more of
these atomic operations:

" int atomicExch( int* address, int val ):

Read old value at address, store val in address, return old value

" int atomicMin( int* address, int wval ):
Read old value at address, compute minimum of old and val, store
result in address, return old value

= int atomicAnd( int* address, int val ),
= Atomic add

= And atomic compare-and-swap ...
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= The fundamental atomic operation "Compare And Swap":
* In CUDA: int atomicCAS ( int* address, int compare, int val )

= Performs this little algorithm atomically:

atomic compare and swap( address, compare, new val ):

old «— value in memory location address
if compare == old:

store new val — memory location address
return old

= Theorem (w/o proof):
All other atomic operations can be implemented using atomic
compare-and-swap.
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= Example:

atomic_add( address, incr ):

current val := value in memory location address
repeat
new val := current val + incr

assumed_val :
current wval :

current val

compare and swap( address,
assumed val,
new val )

until assumed_val == current_yal

G. Zachmann Massively Parallel Algorithms SS May 2013 Fundamental Algos & Introduction to CUDA 123



eeeee

G. Zachmann Massively Parallel Algorithms SS May 2013 Fundamental Algos & Introduction to CUDA 124



eeeeee

W Advanced GPU & Bus Utilization

= Problem with performance, if lots of transfer between GPU«—CPU:

—

) ) )

Only use one transfer direction, Bus idle Only use one
GPU idle transfer direction,
GPU idle
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= Solution: pipelining (the "other" parallelism paradigm)

= |s called

"device

overlap"

in CUDA parlance

= Requires two CUDA techniques
called "streams" and "asychronous

memcpy"
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For More Information on CUDA ...

= CUDA C Programming Guide (zur Programmiersprache)
= CUDA C Best Practices Guide (zur Performance-Steigerung)

= /Developer/NVIDIA/CUDA-5.0/doc/html/index.html|
(zum Runtime API)
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W Concepts we Have Not Covered Here
= Dynamic parallelism (threads can launch
new threads) g:% W
= Good for irregular data parallelism (e.qg., tree Ezﬁ%mmm LRI

traversal, multi-grids) - B

= Running several tasks at the same time on

Dynamic Parallelism

a GPU (Vla MPI; they Ca” it n Hyper_Q") Mtjkes GPU Computinf ;asier & Broadens Reach

Just right

= See:
. CPU C Simul ly Run Task Kepl
= "Introduction to CUDA 5.0" on the course e s iy
web page

= "CUDA C Programming Guide" at
docs.nvidia.com/cuda/index.html
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= Graphics Interoperability:

= Transfer images directly from CUDA memory to OpenGL's framebuffer
= Dynamic shared memory
= Asynchronous memory copies between host < device

= Dynamic memory allocation in the kernel

= Can have serious performance issues

Pinned CPU memory (
CUDA Streams

Multi-GPU programming, GPU-to-GPU memory transfer
= Zero-copy data transfer

= Libraries: CUBLAS, Thrust, ...
= Voting functions ( __all(), _any() )
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= With Graphics Interoperability, you can render results from CUDA
directly in a 3D scene, e.g. by using them as textures

Demo in demos/shader/mandelbrot
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